Letter to the Editor

Multidisciplinary management of a malignant rhabdoid tumor of the neck and mediastinum in an infant

Tzu-ya Lo, Shih-Chiang Huang, Yu-Sheng Chang, Yi-Lun Wang, Tsung-Yen Chang, Tang-Her Jaing

aCollege of Medicine, Chang Gung University, Taoyuan, Taiwan
bDepartment of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
cDivision of Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
dDivisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.

Short title: Malignant rhabdoid tumor

Address correspondence to: Tang-Her Jaing M.D.

Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University
5 Fu-Shin Street, Kwei-Shan 33305
Taoyuan, Taiwan

Email address: jaing001@cgmh.org.tw
Multidisciplinary management of a malignant rhabdoid tumor of the neck and mediastinum in an infant

Dear Editor:

Malignant rhabdoid tumor (MRT) is a highly aggressive tumor associated with an abysmal prognosis. Here, we describe the case of a 9-month-old boy who presented with MRT in the anterior mediastinum.

This boy had flu-like symptoms, and he was brought to our emergency department because of progressive dyspnea, anorexia, vomiting, and decreased urine output. Chest X-ray imaging showed increased infiltration that led to his admission and treatment for suspicious pneumonia. However, computed tomography (CT) showed a multiseptated cystic lesion in the anterior mediastinum, which extended to the left lower neck, pushing the heart and airway to the right side (Fig. 1A). Because of severe respiratory distress and impaired consciousness, he was transferred to the intensive care unit for intubation. Surgical intervention was performed the next day, and a 15 × 10 × 8-cm anterior mediastinal tumor with feeding arteries and venous return systems was identified (Fig. 1B). However, the tumor could not be entirely resected because of the innominate vein and phrenic nerve involvement.

The histological examination demonstrated infiltrative and solid sheet-like proliferation of malignant epithelioid tumor cells with rhabdoid features (Fig. 1C). Immunohistochemically, the tumor cells were positive for cytokeratin (AE1/AE3), ERG, and BRG1 (Fig 1D–1G) and negative for INI-1, CD34, desmin, myogenin, S100, SALL-4, and glypican-3. The tumor exhibited necrosis and increased mitotic
activity with thymus and lymph node encroachment. Whole-body CT showed residual enhancing soft tissue of ~12 mm in the left upper mediastinum, lateral to the great mediastinal vessels, without the brain, abdominal, or renal metastasis.

Given the aggressive characteristics of the remnant malignant tissue, six cycles of vincristine, dactinomycin, ifosfamide, and doxorubicin regimen were started, followed by maintenance target therapy of bevacizumab. As per the literature, bevacizumab reinitiation should be delayed to at least 28 days postoperatively to avoid wound healing complications.\(^2\) Thus, we initiated bevacizumab with 15 mg/kg administered every 3 weeks after 28 days of the debulking surgery. The latest CT images showed regression of the mediastinal mass ~1 year postoperatively. To date, the boy had received 15 cycles of bevacizumab-targeted therapy. He tolerated the regimen well, with manageable side effects and was in a stable condition. However, other side effects of bevacizumab, such as hypertension and proteinuria, were still monitored.\(^2\)

The tumor mutation burden (TMB) is often used to predict whether a patient shows a clinical response to immune checkpoint inhibitor therapy. The mutations of germline or somatic \textit{SMARCB1} (INI1), or rarely \textit{SMARCA4} (BRG1), are the oncogenetic driving events of MRT. Nevertheless, MRT usually harbors a very low TMB, which might indicate a poor response to immunotherapy; however, it might not exclude the possibility of a level of PD-L1 expression that implies the clinical benefit of immunotherapy.\(^3\) However, immature thymus glands in infants and children might undermine the efficiency of PD-1/PD-L1 inhibitors because of insufficient well-trained T cells. Although current multidisciplinary therapies, such as surgery, chemotherapy, and targeted therapy, have shown anti-tumor efficacy in this patient, long-term follow-up is still warranted to understand the effects of persistent disease.
Author contributions

J.T. study conception and design; L.T, H.S, and C.Y. data collection; W.Y, and C.T. gave conceptual advice. All authors reviewed the results and approved the final version of the manuscript.

Ethical approval

This study has been approved by our institutional review board.

Informed consent

The oral informed consent has been recorded and transcribed. This report does not contain any personal information that could lead to the identification of the patient.

Declaration of competing interest

The authors declare no conflict of interest.

Acknowledgments

The authors thank the nursing staff who participated in this study

References

Fig 1. (A) Left mediastinal mass before surgery. (B) Subxiphoid and intercostal approaches for the anterior mediastinal tumor resection. (C) Microscopic examination of hematoxylin–eosin-stained histologic slides (400×) showed infiltrative and solid sheet-like proliferation of dyscohesive malignant rhabdoid tumor cells (arrows) displaying eccentric nuclei, prominent nucleoli, eosinophilic cytoplasm, and increased mitotic activity (arrowhead). (D) INI-1 immunostaining (400×) demonstrated complete loss of the INI-1 protein in the nuclei of tumor cells (arrows), with normal endothelial and inflammatory cells (arrowheads) serving as internal positive controls. (E) A subset of tumor cells is positive for cytokeratin (arrows). (F) The tumor cells show retained nuclear BRG-1 expression (arrows). (G) The tumor cells are positive for ERG (arrows), with endothelial cells serving as internal controls (arrowheads).
Dear Editor,

Malignant rhabdoid tumor (MRT) is a highly aggressive tumor associated with an abysmal prognosis. Here, we described the case of a 9-month-old boy who presented with MRT in the anterior mediastinum.

This boy suffered from flu-like symptoms, and he was brought to our emergency department due to progressive dyspnea, anorexia, vomiting, and decreased urine output when he was 9 months old. Chest X-ray showed increased infiltration, which led to admission and treatment as suspicious pneumonia. However, the computed tomography (CT) showed a multiseptated cystic lesion in the anterior mediastinum, which extended to the left lower neck, pushing the heart and airway to the right side (Fig. 1A). Due to severe respiratory distress and impaired consciousness, he was transferred to the intensive care unit requiring intubation. Surgical intervention was performed the next day, and a 15x10x8 cm anterior mediastinal tumor with feeding arteries and venous return systems was identified (Fig. 1B). However, the tumor could not be entirely resected due to innominate vein and phrenic nerve involvement.

The histologic examination demonstrated infiltrative and solid sheet-like proliferation of malignant epithelioid tumor cells with rhabdoid features (Fig. 1C). Immunohistochemically, the tumor cells were positive for cytokeratin (AE1/AE3), ERG, and BRG1 (Fig 1D~1G) and negative for INI-1, CD34, desmin, myogenin, S100,
SALL-4, and glypican-3. The tumor exhibited necrosis and increased mitotic activity with the thymus and lymph node encroachment. Whole-body CT showed residual enhancing soft tissue about 12 mm in the left upper mediastinum, lateral to great mediastinal vessels, with no brain, abdominal, or renal metastasis.

Given the aggressive character of the remnant malignant tissue, we started 6 cycles of VAIA regimen (Vincristine, Dactinomycin, Ifosfamide, Doxorubicin), followed by maintenance target therapy of bevacizumab. As per the literature, the reinitiation of bevacizumab should wait at least 28 days postoperatively to avoid wound healing complications. Thus, we initialized bevacizumab with 15 mg/kg administrated every 3 weeks after 28 days of the debulking surgery. The last CT images showed regression of the mediastinal mass approximately 1 year post-operatively. To date, the boy had received 15 cycles of bevacizumab targeted therapy. He tolerated the regimen well, with manageable side effects and a stable condition. However, we still have to look after other side effects of bevacizumab, such as hypertension and proteinuria.

Tumor mutation burden (TMB) is often used to predict whether a patient shows a clinical response to immune checkpoint inhibitor therapy. The mutations of germline or somatic SMARCB1 (INI1), or rarely SMARCA4 (BRG1), are the oncogenetic driving event of MRT. Nevertheless, MRT usually harbors a very low TMB, which might indicate a poor response to immunotherapy, while it might not exclude the
possibility of a level of PD-L1 expression that implies the clinical benefit of immunotherapy. However, immature thymus glands in babies and children might undermine the efficiency of PD-1/PD-L1 inhibitors due to insufficient well-trained T cells. Although current multidisciplinary therapies, including surgery, chemotherapy, and targeted therapy, have shown anti-tumor efficacy in this patient, long-term follow-up was still warranted to understand the effects when the disease lingers.
Author contributions

J.T. study conception and design; L.T, H.S, and C.Y. data collection; W.Y, and C.T. gave conceptual advice. All authors reviewed the results and approved the final version of the manuscript.

Ethical approval

This study has been approved by our institutional review board.

Informed consent

The oral informed consent has been recorded and transcribed. This report does not contain any personal information that could lead to the identification of the patient.

Declaration of competing interest

The authors declare no conflict of interest.

Acknowledgments

The authors thank the nursing staff who participated in this study.
References

Legends

Fig 1. (A) Left mediastinal mass before surgery and (B) Subxiphoid and intercostal approaches for anterior mediastinal tumor resection. (C) Microscopic examination of hematoxylin-eosin stained histologic slides (400x) showed infiltrative and solid sheet-like proliferation of dyscohesive malignant rhabdoid tumor cells (arrows) displaying eccentric nuclei, prominent nucleoli, eosinophilic cytoplasm, and increased mitotic activity (arrowhead). (D) The INI-1 immunostain (400x) demonstrated complete loss of INI-1 protein in nuclei of tumor cells (arrows), with normal endothelial and inflammatory cells (arrowheads) serving as internal positive controls. (E) A subset of tumor cells is positive for cytokeratin (arrows). (F) The tumor cells show retained nuclear BRG-1 expression (arrows). (G) The tumor cells are positive for ERG (arrows), with endothelial cells serving as internal controls (arrowheads).
Multidisciplinary management of a malignant rhabdoid tumor of the neck and mediastinum in an infant patient

AUTHORSHIP
All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication.

Indicate the specific contributions made by each author (list the authors’ initials followed by their surnames, e.g., Y.L. Chang). The name of each author must appear at least once in each of the three categories below.

Category 1
Conception and design of study (typed):________________________,________________________,________________________;
acquisition of data (typed):________________________,________________________,________________________,________________________;
analysis and/or interpretation of data (typed):________________________,________________________,________________________,________________________.

Category 2
Drafting the manuscript (typed): T.Y. Lo, S.C. Huang, Y.S. Chang, Y.L. Wang;
revising the manuscript critically for important intellectual content (typed): T.Y. Chang, T.H. Jaing,
________________________,________________________.

Category 3
Approval of the version of the manuscript to be published (names of all authors must be typed below):
T.Y. Lo, S.C. Huang, Y.S. Chang, Y.L. Wang, T.Y. Chang,
T.H. Jaing, __________________________, __________________________.

Acknowledgments
All persons who have made substantial contributions to the work reported in the manuscript (e.g., technical help, writing and editing assistance, general support), but who do not meet the criteria for authorship, are named in the Acknowledgments and have given us their written permission to be named. If we have not included an Acknowledgments, then that indicates that we have not received substantial contributions from non-authors.
CONFLICTS OF INTEREST
A conflict of interest occurs when an individual’s objectivity is potentially compromised by a desire for financial gain, prominence, professional advancement or a successful outcome. PEDN editors strive to ensure that what is published in the Journal is as balanced, objective and evidence-based as possible. Since it can be difficult to distinguish between an actual conflict of interest and a perceived conflict of interest, the Journal requires authors to disclose all and any potential conflicts of interest.

Section I
The authors whose names are listed immediately below certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Author names (typed): Tzu-ya Lo, Shih-Chiang Huang, Yu-Sheng Chang, Yi-Lun Wang, Tsung-Yen Chang, Tang-Her Jaing

Section II
The authors whose names are listed immediately below report the following details of affiliation or involvement in an organization or entity with a financial or non-financial interest in the subject matter or materials discussed in this manuscript. Please specify the nature of the conflict on a separate sheet of paper if the space below is inadequate.

Author names (typed):

Details of the conflict(s) of interest:
This Authorship & Conflicts of Interest Statement is signed by all the authors listed in the manuscript to indicate agreement that the above information is true and correct (a photocopy of this form may be used if there are more than 10 authors):

<table>
<thead>
<tr>
<th>Author’s name (typed)</th>
<th>Author’s signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tzu-ya Lo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shih-Chiang Huang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yu-Sheng Chang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yi-Lun Wang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsung-Yen Chang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tang-Her Jaing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>